St. Mary's Academy
 Algebra + Geometry Challenge Exam Review Sheet

(To place into Algebra 2)
The Algebra + Geometry Challenge Exam is for students hoping to enroll in Algebra 2 for their freshman year at SMA. These students must have taken both Algebra 1 and Geometry in middle school. The following topics will be tested on the Algebra + Geometry Challenge Exam. All topics can be found in any standard Algebra textbook and Geometry textbook.

ALGEBRA TOPICS:

General Topic					
Simplifying Expressions with and without Variables	Order of operations Addition and subtraction of signed numbers Using the distributive property Combining like terms				
	Multiplying and dividing signed numbers Multiplying a monomial and a polynomial Multiplying two binomials Multiplying a binomial and a trinomial Expressions with Absolute value				
Area and Perimeter	Solving a problem given area and/or perimeter of an object.				
Solving Linear Equations	Solving equations with variables on one side Solving equations with variables on both sides Solving equations involving parentheses Solving equations involving like terms. Writing and Solving proportional equations.				
Graphing on the Coordinate Plane	Graphing Ordered pairs Graphing Linear equations from:				
- a table of values					
- an equation with slope and y-intercept		$	$	Working with Linear	Rates of change and slope Identify a graph, table, or word problem as linear or non-linear Identify slope \& y-intercept from a graph or word problem Functions
:---	:---				
Write equation of a line given:					
- slope and y-intercept					

Graphing Linear Inequalities	Graphing solutions to an inequality on a number line Graphing solutions to a two-variable inequality on a graph
Patterns	Observing and representing patterns using math.
Function Notation	Understanding and using $\mathrm{f}(\mathrm{x})$ notation.
Quadratic Functions	Drawing a quadratic function from a table of values Solving a quadratic by using the Quadratic Formula (will be provided). Solving a quadratic by factoring and/or the zero-product property.
Factoring Methods	Factoring out a common monomial factor Factoring a trinomial expression Factoring a difference of two perfect squares
Exponential Functions	Sketching an exponential function based on an equation Using the initial value and growth factor to write an equation.
Simplifying Exponential Expressions	Multiplying and dividing exponential expressions. Simplifying expressions with negative exponents Powers of exponential expressions.

GEOMETRY TOPICS:

Definitions	Pythagorean Theorem Converse of the Pythagorean Theorem Parts of a Circle Vertical Angles
Lines \& Angles	Estimating the measure of an angle Parallel/perpendicular lines \& the angle measures around them Constructing perpendiculars
Polygons	Isosceles/equilateral triangles and their properties Triangle Inequality Convex/nonconvex Types of quadrilaterals Sums of interior angle measures in polygons
Triangle Congruence	Paragraph \& Two-column proofs Triangle congruence theorems Triangle congruence proofs Properties of regular polygons and parallelograms
Measurement	Perimeter/circumference Areas of triangles, quadrilaterals, circles and sectors Pythagorean Theorem
Surface Area \& Volume	Prisms, cylinders, spheres Nets
Coordinate Geometry	Distance between 2 points Distance formula Midpoint formula Slopes of parallel and perpendicular lines Equations for circles
Similarity	Ratios \& Proportions Similar Figures Fundamental Theorem of Similarity
Rigonometry	Right triangle trigonometry Law of Sines Law of Cosines Special right triangles (45-45-90 and 30-60-90)

Geometry Formula Sheet ${ }^{*}$

REFERENCE

$A=\pi r^{2}$
$A=\ell w$
$A=\frac{1}{2} b h$
$c^{2}=a^{2}+b^{2}$
Special Right Triangles
$C=2 \pi r$

$V=\ell w h$

$V=\pi r^{2} h$

$V=\frac{4}{3} \pi r^{3}$

$V=\frac{1}{3} \pi r^{2} h$

$V=\frac{1}{3} \ell w h$

[^0]
[^0]: * This Geometry Formulas sheet will be provided on the Exam

